Staphylococcus aureus and Whey
A Collaboration between Industry, Regulatory and Academia

Karen Smith, PhD
Wisconsin Center for Dairy Research

Center for Dairy Research “Solution Based Research Backed by Experience, Passion and Tradition”
Some History

- Whey handling in Wisconsin covered by ATCP 65
 - Focus is safety
 - Cooled to <45°F or heated to/maintained at >140°F
 - Within 4 hours of draw from vat
 - Legal pasteurization

- Cooling to <45°F
 - Cost, cost, cost
 - Most plants would have to add cooling capacity

- Heating to >140°F
 - Damage to whey proteins
 - Undesired color changes

- Concern is *Staphylococcus aureus*
Why do We Care About *Staphylococcus aureus*?

- Also known as *S. aureus*
- Gram-positive, aerobic cocci
- Optimal growth conditions
 - pH 6.5
 - 86-99°F
- Ubiquitous (air, dust, clothing, floors, water, sewage and insects)
 - Principal source is human nose (6 – 50% of population)
 - Also found on hands, infected wounds, burns, etc.
- Poor competitor
- **Produces heat stable toxin** (not all strains)
 - Requires 10^{5-6} vegetative cells to produce toxin
 - Withstands 250°F for up to 10 minutes
Why do We Care About *Staphylococcus aureus*? (continued)

- Low populations can recontaminate whey
 - Personnel, improperly cleaned equipment, etc.
- Uncooled whey has optimum temperature for growth
 - *S. aureus* optimum 86-99°F
- If toxin produced then remains in the product throughout processing. Not inactivated by heat.
- *S. aureus* is in the Top 5 of food borne pathogens in U.S.
Some History (continued)

- Plants have trouble complying with temperature requirement
 - Cost of equipment
 - Operating cost for cooling
- CDR and DATCP worked together to provide options
- Development of variance process
 - Establish parameters for time/temperature for holding whey
 - Demonstrate product safe under those conditions
 - Monitoring process
 - Process for handling product outside of allowed parameters
 - Conditional use of 100 ppm hydrogen peroxide
Current Options

- Within 4 hours of start of whey draw
 - Meet heating/cooling requirement OR
 - Pasteurize the whey (time and seal) OR
 - Allow pH of whey to drop below 4.6
- Option to use 100 ppm hydrogen peroxide to control pH
- Obtain a variance
 - A central processing facility needs a variance for each whey supplier
 - Monitoring time/temperature/coliforms
 - Option to use 100 ppm hydrogen peroxide
 - Product disposed of if conditions not met
 - Applies only to whey from pasteurized cheese milk
Variances and Whey Handling

- Focus is food safety
- Must demonstrate the product is safe despite being held outside allowed Ag80 temperatures
- *Staphylococcus aureus* concern
- Coliforms used as an indicator of possible problems
- Temporary allowance to use hydrogen peroxide
The Basic Problem

- **Food safety**
 - If no cooling then lower pH is desired
 - If pH decreases then no *S. aureus* growth/toxin

- **Product quality**
 - pH decrease (acid production) makes sticky whey

- **Use of hydrogen peroxide to control microorganisms but does it stop both *S. aureus* and cheese cultures?**

- **Quality versus food safety issue**
 - Low pH keeps *S. aureus* from growing BUT
 - Low pH is an unacceptable product for whey processor
A Balancing Act

Product safety and quality

Product at a reasonable cost

Balance
Partnering to Solve the Problem

- Initially DATCP and CDR working together
 - Ensuring safety for whey not meeting cooling requirements
 - Variance program
 - Limited use of hydrogen peroxide
- Quickly apparent information lacking on *S. aureus* and whey
- Spring 2016 a group met
 - Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP)
 - Wisconsin Cheese Makers Association (WCMA)
 - Food Research Institute (FRI)
 - Center for Dairy Research (CDR)
Regulatory, Industry and Science groups agreed on information needed.

Group developed a plan for finding answers to questions:
- How does starter bacteria and acid production affect *S. aureus*?
- What is the effect of temperature on *S. aureus*?
- What is the effect of hydrogen peroxide on *S. aureus* growth?
- What are the Z- and D- values for *S. aureus* in whey?

FRI would do the research.

WCMA would fund the study.

DATCP and CDR hopefully would be able to use the data to develop alternatives to current processes.
Approaches for Inactivating *S. aureus*

- **Addition of hydrogen peroxide**
 - Hydrogen peroxide (H$_2$O$_2$) has very reactive oxygen atoms
 - Able to punch holes in bacterial cell wall thereby killing the bacteria

- **Thermal inactivation**
 - Heat denatures enzymes of the bacteria causing death
 - Damages cell envelope causing fluid inside to burst out
Study Design

- **Whey from cheese making at CDR**
 - No starter, mesophilic or thermophilic
 - Average starting pH 6.3 – 6.6
- **S. aureus added to whey**
 - 3 strain mixture known to cause food poisoning
 - 3-log CFU/ml
- **Hydrogen peroxidized added**
 - 0, 10 or 100 ppm
- **Incubated at 70 or 90°F**
- **Sampled at 0, 4, 8, 12 and 24 hours**
Acid Production by Cheese Starter Cultures

- Starter cultures will continue to produce acid in whey unless:
 - Temperature is too high
 - Temperature is too low
 - Inactivated by hydrogen peroxide
 - Inactivated by heating

- Acid negatively affects whey quality

- How cool does whey have to be to stop acid production?
- How does pasteurization affect acid production?
How Bacteria Grow

Bacterial Cell Division

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Generation time in hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41°F</td>
</tr>
<tr>
<td>Lactic acid bacteria</td>
<td>>20</td>
</tr>
<tr>
<td>Coliforms</td>
<td>8</td>
</tr>
</tbody>
</table>
pH Development in Raw and Pasteurized Cheddar Whey

- **40 F**
- **100 F**
- **80 F**
- **70 F**

Black dots — Raw
Colored dots — Pasteurized
Effect of Heat Treatment and Storage Temperature on pH Development

Time for raw or pasteurized whey to drop to pH 6.0

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Raw (h)</th>
<th>Pasteurized (h)</th>
<th>Difference (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>70</td>
<td>4</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>40</td>
<td>> 48</td>
<td>> 48</td>
<td>-</td>
</tr>
</tbody>
</table>
How Bacteria Die

- Bacteria not all killed instantly
- Population typically dies exponentially
- Decimal reduction time (D-value)
 - Time to kill 90% of the bacteria
 - Time in minutes to achieve a 10-fold reduction at a given temperature
- D-value is for a specific set of conditions
 - Temperature
 - Composition of media - pH, total solids, etc.
 - Bacteria present
Microbial Exponential Death Rate (10-Fold Reduction)

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Deaths per Minute</th>
<th>Number of Survivors</th>
<th>Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1,000,000</td>
<td>10^6</td>
</tr>
<tr>
<td>1</td>
<td>900,000</td>
<td>100,000</td>
<td>10^5</td>
</tr>
<tr>
<td>2</td>
<td>90,000</td>
<td>10,000</td>
<td>10^4</td>
</tr>
<tr>
<td>3</td>
<td>9,000</td>
<td>1,000</td>
<td>10^3</td>
</tr>
<tr>
<td>4</td>
<td>900</td>
<td>100</td>
<td>10^2</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>10</td>
<td>10^1</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>1</td>
<td>10^0</td>
</tr>
</tbody>
</table>
For this example:

D-value = 1 min

To kill 10^6 bacteria need to heat at D-Value temperature for 7 min

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Number of Survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,000,000</td>
</tr>
<tr>
<td>1</td>
<td>100,000</td>
</tr>
<tr>
<td>2</td>
<td>10,000</td>
</tr>
<tr>
<td>3</td>
<td>1,000</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
Why the pH Decline After Pasteurization?

- Very high population of starter culture in the whey
 - Do not have enough log cycles to kill all of the starter bacteria
 - Starter resumes growing and producing acid if held at favorable temperatures

![Graph showing the affect of starting population on pH decline](image)
What happens to *S. aureus* with:
- Storage temperature
- Acid production
- Hydrogen peroxide addition
- Competition from starter cultures
S. aureus Growth in Whey at 90ºF with and without Peroxide and Starter Culture

Δlog CFU/ml

Hours

0 ppm, No Starter
0 ppm, Starter
10 ppm, No Starter
10 ppm, Starter
100 ppm, No Starter
100 ppm, Starter

UW-Food Research Institute, November 2016
S. aureus Growth in Whey at 70°F with and without Peroxide and Starter Culture
S. aureus and Hydrogen Peroxide

- *S. aureus* produces catalase that inactivates hydrogen peroxide

\[\text{H}_2\text{O}_2 \xrightarrow{\text{catalase}} \text{O}_2 + \text{H}_2\text{O} \]

- Low concentration of hydrogen peroxide

- High concentration of hydrogen peroxide
Growth of *S. aureus*

(Initial population of 10^3 *S. aureus/ml whey)*

Whey without Cheese Starter

<table>
<thead>
<tr>
<th>Peroxide (ppm)</th>
<th>Storage Temperature 70°F</th>
<th>Storage Temperature 90°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Growth >1 log</td>
<td>Growth >2 log</td>
</tr>
<tr>
<td>10</td>
<td>No Growth</td>
<td>Growth >2 log</td>
</tr>
<tr>
<td>100</td>
<td>Decrease 2 log</td>
<td>Decrease >2 log</td>
</tr>
</tbody>
</table>

Whey with Cheese Starter

<table>
<thead>
<tr>
<th>Peroxide (ppm)</th>
<th>Storage Temperature 70°F</th>
<th>Storage Temperature 90°F</th>
<th>Final pH 70°F</th>
<th>Final pH 90°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Growth</td>
<td>Decrease 2 log</td>
<td>4.3</td>
<td>3.8</td>
</tr>
<tr>
<td>10</td>
<td>No Growth</td>
<td>Decrease 2 log</td>
<td>4.3</td>
<td>3.7</td>
</tr>
<tr>
<td>100</td>
<td>Decrease >1 log</td>
<td>Decrease 2 log</td>
<td>6.6</td>
<td>6.6</td>
</tr>
</tbody>
</table>

UW-Food Research Institute, November 2016
Growth of *S. aureus* in Whey

- **Whey with Starter Culture and *S. aureus***
 - pH decreases to <5.0 without H$_2$O$_2$ addition
 - Starter culture competitively inhibits the growth of *S. aureus* at 70°F and 90°F for up to 24 hours
 - Use of 100 ppm H$_2$O$_2$ inhibits both acid production and *S. aureus*
Growth of *S. aureus* in Whey
(continued)

- Whey with No Starter Culture and *S. aureus*
 - Require time-temperature control and/or the addition of hydrogen peroxide
 - *S. aureus* grows > 1 log increase
 - 4 – 8 h at 90°F
 - ~12 h at 70°F
 - Conditions that limit *S. aureus* growth
 - 10 ppm H$_2$O$_2$ - Safe up to 24 hours at 70°F
 - 10 ppm hydrogen peroxide if stored at 90°F for < 8 hours
 - 100 ppm hydrogen peroxide if stored at 90°F for > 8 hours

UW-Food Research Institute, November 2016
Determining Thermal Inactivation of *S. aureus*

D-value – Time for 1 log kill

Z-value – measure of resistance to temperature change
D- and Z-values for *S. aureus* in Whey

- Time/Temperature for a 3 or 5-log kill of *S. aureus*
 - No difference for whey with or without starter culture
- Increased heat = Faster kill

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>D-value (min)</th>
<th>Time to 5 log reduction (min)</th>
<th>Time to 5 log reduction (sec)</th>
<th>Time to 3 log reduction (min)</th>
<th>Time to 3 log reduction (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>1.32</td>
<td>6.60</td>
<td>396</td>
<td>3.96</td>
<td>238</td>
</tr>
<tr>
<td>145</td>
<td>0.38</td>
<td>1.90</td>
<td>114</td>
<td>1.14</td>
<td>69</td>
</tr>
<tr>
<td>150</td>
<td>0.12</td>
<td>0.60</td>
<td>36</td>
<td>0.36</td>
<td>22</td>
</tr>
<tr>
<td>155</td>
<td>0.07</td>
<td>0.35</td>
<td>21</td>
<td>0.21</td>
<td>13</td>
</tr>
</tbody>
</table>
What Does This Mean for Industry?

- Remember - Need both product safety and product quality
 - Safety Issue – Growth of *S. aureus* and possible toxin production
 - Quality Issue – Production of lactic acid by starter cultures
 - Regulatory Issue – Use of hydrogen peroxide to control pH

- Customer requirements will continue to dictate what options are possible
 - Hydrogen peroxide use not allowed for some customers
 - Limits on total plate counts for final powder
What Does This Mean for Industry? (continued)

- **S. aureus** can grow in sweet whey
 - Much slower growth at 70 versus 90°F

- Peroxide effects **S. aureus** growth in sweet whey
 - 10 ppm hydrogen peroxide slows growth of **S. aureus**
 - 100 ppm hydrogen peroxide kills **S. aureus** (starting population of 10^3)

- Pasteurization significantly slows acid production especially if held at 70°F post pasteurization

- CFR permits use of 10 ppm hydrogen peroxide
 - 21CFR 173.356 Food Additives
What Does This Mean for Industry? (continued)

- Are there other options that limit acid production and *S. aureus* growth besides cooling to 45°F or addition of peroxide?
 - Is thermalizing whey a viable option?
 - How cold is cold enough?
 - How many log cycles of kill should be built into the process?
 - Currently being determined at CDR

- Peer reviewed publications
 - Answers questions asked 30 years ago
 - Gives credibility to research
 - Able to incorporate results into regulations (PMO)
Conclusions About the Study

- Only made possible because industry, regulatory and scientific groups worked together
- Group decided at the start what worked for everyone
 - Put down on paper what everyone needed from the work
 - Everyone agreed to the needs of others in the group
- Group then decided
 - Variables to be studied
 - Exact conditions (temperatures, concentrations, etc.)
 - Cost
 - Meet and review as study progressed
Conclusions About the Study (continued)

- After initial work was completed
 - Group met again
 - Discussed what it all meant
 - Decided what else needed to be done

- After remainder of work completed
 - Met again to discuss
 - Agreed to additional funding for extra work to explore promising options

- Finally
 - Met to agree on what it means for each group
 - Next steps
 - Celebrate
What Everyone Came Away With

Science
- Papers for peer reviewed publication
- Expanded knowledge on product (whey) safety

Regulatory
- Options for safe handling of whey
- Peer reviewed data that supports changes in whey handling

Industry
- Additional options for safe whey handling that preserve quality and safety while reducing costs
Special Thanks

- **Food Research Institute**
 - Kathy Glass, Brandon Wanless and Kori Scherer

- **Department of Agriculture Trade and Consumer Protection**
 - Steve Ingham and Pete Haase

- **Wisconsin Cheese Makers Association**
 - John Umhoefer

- **Wisconsin Center for Dairy Research**
 - Marianne Smukowski
 - Mark Johnson
 - Karen Smith
Program funding provided by Wisconsin Milk Marketing Board and National Dairy Council managed by Dairy Management, Inc.